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The K correction

David W. Hogg1,2, Ivan K. Baldry3, Michael R. Blanton1, and Daniel J. Eisenstein4

ABSTRACT

The K correction “corrects” for the fact that sources observed at different red-

shifts are, in general, compared with standards or each other at different rest-frame

wavelengths. It is part of the relation between the emitted- or rest-frame absolute mag-

nitude of a source in one broad photometric bandpass to the observed-frame apparent

magnitude of the same source in another broad bandpass. This short pedagogical paper

provides definitions of and equations for the K correction.

1. Introduction

The expansion of the Universe provides astronomers with the benefit that recession velocities

can be translated into radial distances. It also presents the challenge that sources observed at dif-

ferent redshifts are sampled, by any particular instrument, at different rest-frame frequencies. The

transformations between observed and rest-frame broad-band photometric measurements involve

terms known as “K corrections” (Humason, Mayall, & Sandage 1956; Oke & Sandage 1968).

Here we define the K correction and give equations for its calculation, with the goals of

explanation, clarification, and standardization of terminology.

In what follows, we consider a source observed at redshift z, meaning that a photon observed

to have frequency νo was emitted by the source at frequency νe with

νe = [1 + z] νo . (1)

The apparent flux of the source is imagined to be measured through a finite observed-frame band-

pass R and the intrinsic luminosity is imagined to be measured through a finite emitted-frame

bandpass Q. The K correction is used in relating these two quantites.

Technically, the K correction described here includes a slight generalization from the original

conception: The observed and emitted-frame bandpasses are permitted to have arbitrarily different

shapes and positions in frequency space (as they are in, e.g., Kim et al 1996). In addition, the

equations below permit the different bandpasses to be calibrated to different standard sources.
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2. Equations

Consider a source observed to have apparent magnitude mR when observed through photo-

metric bandpass R, for which one wishes to know its absolute magnitude MQ in emitted-frame

bandpass Q. The K correction KQR for this source is defined by

mR = MQ + DM + KQR , (2)

where DM is the distance modulus, defined by

DM = 5 log10

[

DL

10 pc

]

, (3)

where DL is the luminosity distance (e.g., Hogg 1999) and 1 pc = 3.086 × 1016 m.

The apparent magnitude mR of the source is related to its spectral density of flux fν(ν) (energy

per unit time per unit area per unit frequency) by

mR = −2.5 log10









∫

dνo

νo

fν(νo)R(νo)
∫

dνo

νo

gR
ν (νo)R(νo)









, (4)

where the integrals are over the observed frequencies νo; gR
ν (ν) is the spectral density of flux

for the zero-magnitude or “standard” source, which, for Vega-relative magnitudes, is Vega (or

perhaps a weighted sum of a certain set of A0 stars), and, for AB magnitudes (Oke & Gunn 1983),

is a hypothetical constant source with gAB
ν (ν) = 3631 Jy (where 1 Jy = 10−26 W m−2 Hz−1 =

10−23 erg cm−2 s−1 Hz−1) at all frequencies ν; and R(ν) describes the bandpass, as follows:

The value of R(ν) at each freqency ν is the mean contribution of a photon of frequency ν to

the output signal from the detector. If the detector is a photon counter, like a CCD, then R(ν)

is just the probability that a photon of frequency νo gets counted. If the detector is a bolometer

or calorimeter, then R(ν) is the energy deposition h ν per photon times the fraction of photons

of energy ν that get absorbed into the detector. If R(ν) has been properly computed, there is no

need to write different integrals for photon counters and bolometers. Note that there is an implicit

assumption here that detector nonlinearities have been corrected.

The absolute magnitude MQ is defined to be the apparent magnitude that the source would

have if it were 10 pc away, at rest (i.e., not redshifted), and compact. It is related to the spectral

density of the luminosity Lν(ν) (energy per unit time per unit frequency) of the source by

MQ = −2.5 log10









∫

dνe

νe

Lν(νe)

4π (10 pc)2
Q(νe)

∫

dνe

νe

gQ
ν (νe)Q(νe)









, (5)

where the integrals are over emitted (i.e., rest-frame) frequencies νe, DL is the luminosity distance,

and Q(ν) is the equivalent of R(ν) but for the bandpass Q. As mentioned above, this does not
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require Q = R, so this will lead to, technically, a generalization of the K correction. In addition,

since the Q and R bands can be zero-pointed to different standard sources (e.g., if R is Vega-relative

and Q is AB), it is not necessary that g
Q
ν = gR

ν .

If the source is at redshift z, then its luminosity is related to its flux by

Lν(νe) =
4π D2

L

1 + z
fν(νo) , (6)

νe = [1 + z] νo . (7)

The factor of (1 + z) in the luminosity expression (6) accounts for the fact that the flux and

luminosity are not bolometric but densities per unit freqency. The factor would appear in the

numerator if the expression related flux and luminosity densities per unit wavelength.

Equation (2) holds if the K correction KQR is

KQR = −2.5 log10









[1 + z]

∫

dνo

νo

fν(νo)R(νo)

∫

dνe

νe

gQ
ν (νe)Q(νe)

∫

dνo

νo

gR
ν (νo)R(νo)

∫

dνe

νe

fν

(

νe

1 + z

)

Q(νe)









. (8)

Equation (8) can be taken to be an operational definition, therefore, of the K correction, from

observations through bandpass R of a source whose absolute magnitude MQ through bandpass Q is

desired. Note that if the R and Q have different zero-point definitions, the gR
ν (νe) in the numerator

will be a different function from the g
Q
ν (νo) in the denominator.

In equation (8), the K correction was defined in terms of the apparent flux fν(ν) in the

observed frame. This is the direct observable. Most past discussions of the K correction (e.g., Oke

& Sandage 1968; Kim et al 1996) write equations for the K correction in terms of either the flux or

luminosity in the emitted frame. Transformation from observed-frame flux fν(νo) to emitted-frame

luminosity Lν(νe) gives

KQR = −2.5 log10









[1 + z]

∫

dνo

νo

Lν([1 + z]νo)R(νo)

∫

dνe

νe

gQ
ν (νe)Q(νe)

∫

dνo

νo

gR
ν (νo)R(νo)

∫

dνe

νe

Lν(νe)Q(νe)









. (9)

In the above, all calculations were performed in frequency units. In wavelength units, the

spectral density of flux fν(ν) per unit frequency is replaced with the spectral density of flux fλ(λ)

per unit wavelength using

ν fν(ν) = λ fλ(λ) , (10)

λ ν = c , (11)



– 4 –

where c is the speed of light. The K correction becomes

KQR = −2.5 log10









1

[1 + z]

∫

dλo λo fλ(λo)R(λo)

∫

dλe λe g
Q
λ (λe)Q(λe)

∫

dλo λo gR
λ (λo)R(λo)

∫

dλe λe fλ([1 + z]λe)Q(λe)









, (12)

where, again, R(λ) is defined to be the mean contribution to the detector signal in the R bandpass

for a photon of wavelength λ and Q(λ) is defined similarly. Note that the hypothetical standard

source for the AB magnitude system, with gAB
ν (ν) constant, has gAB

λ (λ) not constant but rather

gAB
λ (λ) = c λ−2 gAB

ν (ν).

Again, transformation from observed-frame flux fλ(λo) to emitted-frame luminosity Lλ(λe)

gives

KQR = −2.5 log10









1

[1 + z]

∫

dλo λo Lλ

(

λo

1 + z

)

R(λo)

∫

dλe λe g
Q
λ (λe)Q(λe)

∫

dλo λo gR
λ (λo)R(λo)

∫

dλe λe Lλ(λe)Q(λe)









. (13)

Equation (13) becomes identical to the equation for K in Oke & Sandage (1968) if it is assumed

that Q = R, that g
Q
ν = gR

ν , that the variables λ0, F (λ), and Si(λ) in Oke & Sandage (1968) are set

to

λ0 = λe ,

F (λ) = Lλ(λ) ,

Si(λ) = λR(λ) , (14)

and that the integrand λ is used differently in each of the two integrals. Similar transformations

make the equations here consistent with those of Kim et al (1996), although they distinguish

between the classical K correction and one computed for photon counting devices (an unnecessary

distinction); their most similar equation is that given for Kcounts
xy .

3. Discussion

To compute an accurate K correction, one needs an accurate description of the source flux

density fν(ν), the standard-source flux densities gR
ν (ν) and g

Q
ν (ν), and the bandpass functions

R(ν) and Q(ν). In most real astronomical situations, none of these is known to better than a few

percent, often much worse. Sometimes, use of the AB system seems reassuring (relative to, say,

a Vega-relative system) because gAB
ν (ν) is known (i.e., defined), but this is a false sense: In fact

the standard stars have been put on the AB system to the best available accuracy. This involves

absolute spectrophotometry of at least some standard stars, but this absolute flux information is
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rarely known to better than a few percent. The expected deviations of the magnitudes given to

the standard stars from a true AB system are equivalent to uncertainties in gAB
ν (ν).

The classical K correction has Q(ν) = R(ν) and g
Q
ν (ν) = gR

ν (ν). This eliminates the integrals

over the standard-source flux density gR
ν (ν). However, it requires good knowledge of the source

flux density fν(ν) if the redshift is significant. Many modern surveys try to get R(ν) ∼ Q([1 + z]ν)

so as to weaken dependence on fν(ν), which can be complicated or unknown. This requires good

knowledge of the absolute flux densities of the standard sources if the redshift is significant. This

kind of absolute calibration is often uncertain at the few-percent level or worse.

Note that if equation (2) is taken to be the definition of the K correction, then the statement

by Oke & Sandage (1968) that the K correction “would disappear if intensity measurements of

redshifted galaxies were made with a detector whose spectral acceptance band was shifted by 1+ z

at all wavelengths” becomes incorrect; the correct statement is that the K correction would not

depend on the source’s spectrum fν(ν).
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